
Dnssec Key State Transitions
The Grand Unified Theory of Everything Dnssec ;)

Yuri Schaeffer, Yuri@NLnetLabs.nl

December 6, 2010

Contents

1 Introduction 1

2 Cache Centered Approach 2
2.1 Key States . 2
2.2 Keyring . 3
2.3 Key Operations . 3

3 DNSSEC Validity 4

4 Additional Considerations 4
4.1 Urges . 4
4.2 Omnipresent Sets of Keys . 5
4.3 5011 Hack . 5

5 Transition Rules 5
5.1 Transition Rules for Ds(k) . 5
5.2 Transition rules for Dnskey(k) 6
5.3 Transition rules for Rrsig(k) . 8

1 Introduction

During a key roll over each involved key has a state. Matthijs Mekking pointed
out that the state-machine for this key can be represented as three individual
smaller state machines: The state at the parent, the private key state, and the
public key state.

That idea is the basis for this document. A cache centered rather than
a roll-over centered approach is chosen and the three different state machines
are generalized to one type of state machine. The three state machines now
represent the public records associated with a key (ds, dnskey, rrsig). The
state of each record is defined by its reputation among all DNS caches in the
world.

With this we are able to formalize the boundaries of DNSSEC and make
precise statements about the validity of a zone with respect to DNSSEC. This
has two levels: One of them is that we can judge any invariant of states on va-
lidity. The other is that for each state we know under what exact circumstances
we can me a transition to the next state.

1

2 Cache Centered Approach

The cache centered approach uses a few extra concepts. Each key has a goal, an
internal desire to be either known to all caches around the world or no caches
at all. A system can make any state transition as long as it makes sure that the
validity of a zone in general is not compromised. This does also imply that a
key’s goal can be changed at any time without the zone going bogus. E.g. if a
key has a desire to disappear but is the only key left it will stay on duty for as
long as necessary. Also, new keys can be introduced at any time.

Using a cache centered approach has a number of advantages. Here, in
contrast to a roll-over centered approach, keys have no direct relation to each
other. The system does not try to roll from one specific key to another specific
key but rather satisfy all goals while remaining valid as a whole. Essentially
the roll-over is a side effect of the strive to satisfy key goals. New keys can be
introduced and goals can be redefined at any time without a problem. This
makes the system agile, robust, and capable of handling unexpected situations.

This point of view makes sense since the identities validating the zone are
viewing it from a cache’s perspective. We only have to make sure every possible
view on the data is valid at any point in time.

2.1 Key States

A key has two pieces of public information which are represented by three re-
source records: DS, DNSKEY, and RRSIG. Each of which can be known to
a different set of caches and thus require their own state machine (Figure 1).
When we say a key has goal X we mean that it wants to move all its records to
state X.

H

R

O

S

Figure 1: State diagram for individual records.

The state of a resource record is defined by its reputation in world’s caches.
There are 2 certain states, Hidden and Omnipresent. In the first state a resource
record is not available in any cache (anymore). Similarly in the latter state we
are sure all caches have a copy of the record or can at least obtain it (i.e. they
have no old unexpired resource record set).

The two other states represent uncertainty: Rumoured and Squashed. The
separation is a bit artificial as they more or less mean the same. Both represent
that some caches do and some don’t know about the resource record. However,

2

in our model actions (which are observable by the outside world) are only taken
on state transitions. If the goal of a key changes while a record is in an uncertain
state the records reputation does not immediately change. We do however must
explicitly tell the component responsible for publishing the record to introduce
or withdraw it.

Since DNS involves caches and TTLs, it is entirely possible for a record
being in the Rumoured state while in fact every cache in the world holds the
record. The problem is the uncertainty, we have no way to know a record is
fully propagated other than waiting the worst case propagation time. This is
also true for the Squashed state.

Summary. A record is always in one of these four states:

Hidden: The record is in no cache at all.

Rumoured : The record is published but not every cache might be aware.

Omnipresent : Every cache has this record. Or (Section 4.2) a sibling record.

Squashed : The record is withdrawn but some caches might still have it.

Formal definition of record states. Let r be a record, Anounced the col-
lection of records that are actively published, and C the collection of all caches
in the world. The states are defined by:

r ∈ Hidden ≡ H(r) = ∀c ∈ C · r 6∈ c
r ∈ Rumoured ≡ R(r) = ∃c ∈ C · r 6∈ c ∧ ∃c ∈ C · r ∈ c ∧ r ∈ Announced
r ∈ Omnipresent ≡ O(r) = ∀c ∈ C · r ∈ c
r ∈ Squashed ≡ S(r) = ∃c ∈ C · r 6∈ c ∧ ∃c ∈ C · r ∈ c ∧ r /∈ Announced

2.2 Keyring

Although zones can share key material the records are published independently.
As a result each zone must have its own collection of key states. Let us refer to
this collection as a keyring denoted by K. We can define DNSSEC validity over
a keyring (see Section 3). It is required that every state transition of a resource
record does not compromise the validity of the keyring as a whole.

In case a key’s goal is to be Hidden and all three involved records are in
state Hidden, the key may be removed from the keyring. Similar, if a key is in
none of the keychains it could be purged from the keystore.

2.3 Key Operations

A key and its context can be described as a tuple of states 〈Ds,Dnskey,Rrsig〉
for the resource records DS, DNSKEY and RRSIG. Only keys acting in the
role of ksk have a Ds state, similar only a zsk has a Rrsig state. Furthermore
we require the signature over the DNSKEY set to propagate together with the
DNSKEY. We define the following operations on keys:

• Ds(k), state of DS record belonging key k.

3

• Dnskey(k), state of DNSKEY record belonging key k.

• Rrsig(k), state of RRSIG record belonging key k.

• Goal(k) ∈ {Omnipresent,Hidden}, the state each record should move
towards.

• Roles(k) ⊆ {zsk, ksk} excluding ∅, the role(s) a key k should be used for.
Ds(k)∧Dnskey(k) ≡ ksk ∈ Roles(k) and Dnskey(k)∧Rrsig(k) ≡ zsk ∈
Roles(k)

• Alg(k), algorithm of key k for which a transitive and commutative equiv-
alence is defined.

3 DNSSEC Validity

With the definitions of Section 2.1 and beyond we can express the validity of a
zone with respect to DNSSEC. After each state transition the validity must still
hold. If not, the zone might be treated as bogus by some or all validators. This
check does only takes the total set of states in to account, it has no notion of
time. It can only guarantee every cache has a consistent view on the data when
all transitions respected the time constraint and it was ran after each transition.

This check is not intended to be used by key management software but
functions to validate our transition model, either empirical or by formal proof.

∃k ∈ K ·O(Ds(k))∧
∀k ∈ K · (

(H(Ds(k))∨
O(Dnskey(k))∨
∃k′ ∈ K · (

Alg(k) = Alg(k′)∧
O(Ds(k′))∧
O(Dnskey(k′))))

∧
(H(Dnskey(k))∨
O(Rrsig(k))∨
∃k′ ∈ K · (

Alg(k) = Alg(k′)∧
O(Dnskey(k′))∧
O(Rrsig(k′)))))

(1)

4 Additional Considerations

Please ignore this section

4.1 Urges

minimize DS set
minimize RRSIG count
minimize RRSIG flux

4

4.2 Omnipresent Sets of Keys

Our model defines the cache availablility for each key related resource record.
This intruduces a problem for the RRSG for a zsk which does not represent a
single record but in fact a whole collection. In the simpelest situation signatures
can be replaced by new signatures as an atomic operation. It is also valid
however to sign a subset of the data with one key and the rest with another key
(possibly n keys).

Partial signing with multiple keys is a valid situation and a feature of the
current signer. This enables a smooth transition between keys, with as goal to
spread out the workload for a signer. As enforcer we don’t have information
which record sets are signed with which key (because we don’t want to have too
much state). To support a smooth transition while ensuring we are maintaining
a valid zone, we allow a set of keys to be responsible for signing. One of which
should be in omnipresent state. If a key is part of this set it can move to the
Omnipresent state for free, but it adds a restriction for leaving that set.

4.3 5011 Hack

extra F state between O and S. Conditions O → S ≡ O → F + F → S. O-F:
set revoke bit. F-S: wait till bit propagated.

5 Transition Rules

The transition rules are explicitly written in such a way that at least one valid
chain is being kept; a zone can not go insecure1. To support the insecure concept
one could introduce a null key. The null key has it’s unique (null-)algorithm.
Its resource records have state but no actual public data. This key can be rolled
in and out like any other key.

5.1 Transition Rules for Ds(k)

Transition rules for Ds states are only defined for KSKs. Furthermore a Ds
state of key k implies that k has the role of KSK. A premise involving the Ds
state of a non-KSK key is always false.

5.1.1 H(Ds(k))

The DS record is hidden, available in no cache whatsoever. Before submit-
ting either the DNSKEY must be propagated or an other key with the same
algorithm must be ready.

O(Goal(k))∧
(O(Dnskey(k))∨
∃k′ ∈ K · (

Alg(k) = Alg(k′)∧
O(Ds(k′))∧
O(Dnskey(k′))))

` [submit], R(Ds(k)) (2)

1This prevents the system taking an ’insecure shortcut’ to a new key.

5

5.1.2 R(Ds(k))

Because the DS record was never fully known in the world (at least to our own
knowledge) we can savely withdraw it. Nothing started to depend on it yet.

H(Goal(k)) ` S(Ds(k)) (3)

This transition depend on external processes, possibly human. If it is con-
firmed the process was successfull and enough time has passed since then, we
may conclude the DS record is now Omnipresent.

O(Goal(k))∧
Confirmed(kds)∧
Tnow ≥ Twhatever

 ` O(Ds(k)) (4)

5.1.3 O(Ds(k))

We may withdraw a DS record if there is another valid chain and we do not risk
breaking another chain of the same algorithm.

H(Goal(k))∧
∃k′ ∈ K · (

k′ 6= k∧
O(Ds(k′)))∧

∀k′ ∈ K · (
Alg(k) 6= Alg(k′)∨
H(Ds(k′))∨
O(Dnskey(k′))∨
∃k′′ ∈ K · (

Alg(k′′) = Alg(k′)∧
O(Ds(k′′))∧
O(Dnskey(k′′))∧
k′′ 6= k))

` [withdraw], S(Ds(k)) (5)

5.1.4 S(Ds(k))

Again, without punishment we can move between the two uncertain states.

O(Goal(k)) ` [submit], R(Ds(k)) (6)

We must wait till at least Twhatever before transition to State Hidden.

Tnow ≥ Twhatever ` H(Ds(k)) (7)

5.2 Transition rules for Dnskey(k)

Every key, independent of role, has a DNSKEY record. Therefore we must be
extra carefull about the type of key the record belongs to.

6

5.2.1 H(Dnskey(k))

A KSK can only introduce a DNSKEY record if there is a ZSK of the same algo-
rithm ready. A ZSK may additionally introduce it if its RRSIG is Omnipresent.

O(Goal(k))∧
(O(Rrsig(k))∨
∃k′ ∈ K · (

Alg(k) = Alg(k′)∧
O(Dnskey(k))∧
O(Rrsig(k))))

` [submit], R(Dnskey(k)) (8)

5.2.2 R(Dnskey(k))

We can jump freely between uncertain states.

H(Goal(k)) ` [withdraw], S(Dnskey(k)) (9)

We did wait long enough to make sure the dnskey record is known in every
cache?

O(Goal(k)) ∧ Tnow ≥ Twhatever ` O(Dnskey(k)) (10)

5.2.3 O(Dnskey(k))

If not part of a chain, withdraw. If there is still a DS make sure there is some
other valid chain for this algorithm. If none for this algorithm are broken, some
other algorithm will do as well.

H(Goal(k))∧
∀k′ ∈ K · (

(ksk 6∈ Roles(k′)∨
H(Ds(k′))∨
(O(Dnskey(k′)) ∧ k 6= k′)∨
∃k′′ ∈ K · (

k 6= k′′∧
Alg(k′) = Alg(k′′)∧
O(Ds(k′′))∧
O(Dnskey(k′′))))

∧
(H(Dnskey(k′))∨
O(Rrsig(k′))∨
∃k′′ ∈ K · (

k 6= k′′∧
Alg(k′) = Alg(k′′)∧
O(Dnskey(k′′))∧
O(Rrsig(k′′)))))

` [withdraw], S(Dnskey(k)) (11)

7

5.2.4 S(Dnskey(k))

We can jump freely between uncertain states.

Goal(K) = O ` [submit], R(Dnskey(k)) (12)

State may transition to Hidden given enough time passed to propagate
change.

Tnow ≥ Twhatever ` H(Dnskey(k)) (13)

5.3 Transition rules for Rrsig(k)

5.3.1 H(Rrsig(k))

Signatures may be introduced at any possible time.

O(Goal(k)) ` [submit], R(Rrsig(k)) (14)

5.3.2 R(Rrsig(k))

We can jump freely between uncertain states.

H(Goal(k)) ` [withdraw], S(Rrsig(k)) (15)

Enough time passed to know for sure the signatures are propagated.

O(Goal(k)) ∧ Tnow ≥ Twhatever ` O(Rrsig(k)) (16)

5.3.3 O(Rrsig(k))

If the dnskey is gone from all caches can we withdraw the signatures safely. In
any other case a fully propagated ZSK will also do.

H(Goal(k))∧
(H(Dnskey(k))∨
∃k′ ∈ K · (

k′ 6= k∧
Alg(k) = Alg(k′)∧
O(Dnskey(k′))∧
O(Rrsig(k′))))

` S(Rrsig(k)) (17)

5.3.4 S(Rrsig(k))

We can jump freely between uncertain states.

O(Goal(k)) ` [submit], R(Rrsig(k)) (18)

After some time we know this signatures are no longer know to the world.

Tnow ≥ Twhatever ` H(Rrsig(k)) (19)

8

